Water Quality Monitoring

Types of Assessment 1.Visual/Physical 2.Chemical **3**.Biological

Visual & Physical Assessment

- Why?
 - Important to know the physical properties of a stream as well as the stream conditions before sampling

Visual & Physical Assessment

- Physical characterization includes documentation of land use, description of stream origin & type, summary of the vegetative features, & measurements of in stream parameters, such as width, depth, flow, & substrate
- <u>Stream Flow</u>: volume of the water that moves over a designated point over a fixed period of time; often expressed as cubic feet per second; affected by weather & changes in season; has a large impact on water quality & the living organisms and habitats in the stream

Chemical Monitoring

- A variety of tests can be performed including:
 - Temperature
 - Dissolved Oxygen
 - pH
 - Settleable Solids

Chemical Monitoring

Temperature

- Determines which species may or may not be present in the stream
- Affects feeding, reproduction, & metabolism of aquatic species
- Measures the temperature of the air & the water

• pH

- Indication of the water's acidity
- A range of pH 6.5 to 8.2 is optimal for most species
- A low or high pH can affect egg hatching, kill sources of food for fish & insects, or make water uninhabitable for aquatic life

Chemical Monitoring

- Dissolved Oxygen
 - Limited by temperature & salinity of the water
 - Higher temps = lower dissolved oxygen levels
 - Lower temps = higher dissolved oxygen levels
 - Levels of 5 to 6 ppm are required for growth & activity
 - Levels of 3 ppm are stressful to aquatic organisms
 - Low levels of DO mean a demand on the O2 in the system, waste & other pollutants, dense populations of active fish & high levels of algae

- Settleable Soilds
 - Method used to measure sediment & other particles found in surface water
 - Excessive solids block sunlight and clog gills of fish & macro invertebrates

- Known as Macroinvertebrate Count
- What is a macroinvertebrate?
 - Animals with no spinal column
 - Large enough to have complex bodies & visible to the naked eye
 - Includes aquatic insects, crayfish,& snails

- Why monitor macroinvertebrates?
 - Abundance & diversity of macroinvertebrates found is an indication of overall stream quality
 - Affected by physical, chemical, & biological conditions of the stream
 - Can show effects of pollution
 - Important part of the food web
 - Abundant in most streams
 - Relatively easy to collect & identify
 - Present during all types of stream conditions from droughts to floods

